Subscribe to get Updates
  • Login
Nerd Ciência
  • Home
  • Espaço
  • Astronomia
  • Biotecnologia
  • Arqueologia
  • Contato
No Result
View All Result
  • Home
  • Espaço
  • Astronomia
  • Biotecnologia
  • Arqueologia
  • Contato
No Result
View All Result
Nerd Ciência
No Result
View All Result
Home Artificial Intelligence

Prevendo o comportamento dos outros na estrada com inteligência artificial

Nerd Ciência by Nerd Ciência
9 de maio de 2022
in Artificial Intelligence, Machine Learning, MIT, Robotics, Technology
0
Prevendo o comportamento dos outros na estrada com inteligência artificial
0
SHARES
1
VIEWS
Share on FacebookShare on Twitter

Aprendizado de Máquina Prevendo o Comportamento da Estrada

Os pesquisadores criaram um sistema de aprendizado de máquina que prevê com eficiência as trajetórias futuras de vários usuários da estrada, como motoristas, ciclistas e pedestres, o que pode permitir que um veículo autônomo navegue com mais segurança pelas ruas da cidade. Se um robô vai conduzir um veículo com segurança pelo centro de Boston, ele deve ser capaz de prever o que os motoristas, ciclistas e pedestres próximos farão a seguir. Crédito: MIT

Um novo sistema de aprendizado de máquina pode um dia ajudar os carros sem motorista a prever os próximos movimentos de motoristas, pedestres e ciclistas próximos em tempo real.

Os seres humanos podem ser um dos maiores obstáculos para veículos totalmente autônomos que operam nas ruas da cidade.

Se um robô vai conduzir um veículo com segurança pelo centro de Boston, ele deve ser capaz de prever o que os motoristas, pedestres e ciclistas próximos farão a seguir.

A previsão de comportamento é um problema difícil, no entanto, e as soluções atuais de inteligência artificial são muito simplistas (podem presumir que os pedestres sempre andam em linha reta), muito conservadoras (para evitar pedestres, o robô simplesmente deixa o carro no estacionamento) ou podem apenas prever os próximos movimentos de um agente (as estradas normalmente transportam muitos usuários ao mesmo tempo).

Machine Learning Road Driving Simulation

These simulations show how the system the researchers developed can predict the future trajectories (shown using red lines) of the blue vehicles in complex traffic situations involving other cars, bicyclists, and pedestrians. Credit: MIT

Their behavior-prediction framework first guesses the relationships between two road users — which car, cyclist, or pedestrian has the right of way, and which agent will yield — and uses those relationships to predict future trajectories for multiple agents.

These estimated trajectories were more accurate than those from other machine-learning models, compared to real traffic flow in an enormous dataset compiled by autonomous driving company Waymo. The MIT technique even outperformed Waymo’s recently published model. And because the researchers broke the problem into simpler pieces, their technique used less memory.

“This is a very intuitive idea, but no one has fully explored it before, and it works quite well. The simplicity is definitely a plus. We are comparing our model with other state-of-the-art models in the field, including the one from Waymo, the leading company in this area, and our model achieves top performance on this challenging benchmark. This has a lot of potential for the future,” says co-lead author Xin “Cyrus” Huang, a graduate student in the Department of Aeronautics and Astronautics and a research assistant in the lab of Brian Williams, professor of aeronautics and astronautics and a member of the Computer Science and Artificial Intelligence Laboratory (CSAIL).

Joining Huang and Williams on the paper are three researchers from Tsinghua University in China: co-lead author Qiao Sun, a research assistant; Junru Gu, a graduate student; and senior author Hang Zhao PhD ’19, an assistant professor. The research will be presented at the Conference on Computer Vision and Pattern Recognition.

Multiple small models

The researchers’ machine-learning method, called M2I, takes two inputs: past trajectories of the cars, cyclists, and pedestrians interacting in a traffic setting such as a four-way intersection, and a map with street locations, lane configurations, etc.

Using this information, a relation predictor infers which of two agents has the right of way first, classifying one as a passer and one as a yielder. Then a prediction model, known as a marginal predictor, guesses the trajectory for the passing agent, since this agent behaves independently.

A second prediction model, known as a conditional predictor, then guesses what the yielding agent will do based on the actions of the passing agent. The system predicts a number of different trajectories for the yielder and passer, computes the probability of each one individually, and then selects the six joint results with the highest likelihood of occurring.

M2I outputs a prediction of how these agents will move through traffic for the next eight seconds. In one example, their method caused a vehicle to slow down so a pedestrian could cross the street, then speed up when they cleared the intersection. In another example, the vehicle waited until several cars had passed before turning from a side street onto a busy, main road.

While this initial research focuses on interactions between two agents, M2I could infer relationships among many agents and then guess their trajectories by linking multiple marginal and conditional predictors.

Real-world driving tests

The researchers trained the models using the Waymo Open Motion Dataset, which contains millions of real traffic scenes involving vehicles, pedestrians, and cyclists recorded by lidar (light detection and ranging) sensors and cameras mounted on the company’s autonomous vehicles. They focused specifically on cases with multiple agents.

To determine accuracy, they compared each method’s six prediction samples, weighted by their confidence levels, to the actual trajectories followed by the cars, cyclists, and pedestrians in a scene. Their method was the most accurate. It also outperformed the baseline models on a metric known as overlap rate; if two trajectories overlap, that indicates a collision. M2I had the lowest overlap rate.

“Rather than just building a more complex model to solve this problem, we took an approach that is more like how a human thinks when they reason about interactions with others. A human does not reason about all hundreds of combinations of future behaviors. We make decisions quite fast,” Huang says.

Another advantage of M2I is that, because it breaks the problem down into smaller pieces, it is easier for a user to understand the model’s decision-making. In the long run, that could help users put more trust in autonomous vehicles, says Huang.

But the framework can’t account for cases where two agents are mutually influencing each other, like when two vehicles each nudge forward at a four-way stop because the drivers aren’t sure who should be yielding.

They plan to address this limitation in future work. They also want to use their method to simulate realistic interactions between road users, which could be used to verify planning algorithms for self-driving cars or create huge amounts of synthetic driving data to improve model performance.

“Predicting future trajectories of multiple, interacting agents is under-explored and extremely challenging for enabling full autonomy in complex scenes. M2I provides a highly promising prediction method with the relation predictor to discriminate agents predicted marginally or conditionally which significantly simplifies the problem,” wrote Masayoshi Tomizuka, the Cheryl and John Neerhout, Jr. Distinguished Professor of Mechanical Engineering at University of California at Berkeley and Wei Zhan, an assistant professional researcher, in an email. “The prediction model can capture the inherent relation and interactions of the agents to achieve the state-of-the-art performance.” The two colleagues were not involved in the research.

Reference: “M2I: From Factored Marginal Trajectory Prediction to Interactive Prediction” by Qiao Sun, Xin Huang, Junru Gu, Brian C. Williams and Hang Zhao. 28 March 2022, Computer Science > Robotics.
arXiv:2202.11884

This research is supported, in part, by the Qualcomm Innovation Fellowship. Toyota Research Institute also provided funds to support this work.

Tags: artificialcomportamentodosestradainteligênciaoutrosprevendo
Advertisement Banner
Previous Post

Hubble captura as consequências de um cataclismo cósmico

Next Post

As vacinas COVID-19 podem ser significativamente menos eficazes em pessoas com obesidade grave

Nerd Ciência

Nerd Ciência

Next Post
Previous COVID-19 Infection – But NOT Vaccination – Improves Performance of Antibodies

As vacinas COVID-19 podem ser significativamente menos eficazes em pessoas com obesidade grave

Discussion about this post

Recommended

Qual foi a sensação no controle de operações de missão da NASA quando lançamos o Webb

Qual foi a sensação no controle de operações de missão da NASA quando lançamos o Webb

5 meses ago
Benefícios do CBD: Guia Completo e 7 Melhores Marcas

Benefícios do CBD: Guia Completo e 7 Melhores Marcas

5 meses ago

Don't Miss

Equipe da Estação Espacial abre a escotilha do Boeing Starliner e cumprimenta “Rosie the Rocketeer”

Equipe da Estação Espacial abre a escotilha do Boeing Starliner e cumprimenta “Rosie the Rocketeer”

22 de maio de 2022
Enorme asteróide 7335 (1989 JA) passará pela Terra em 27 de maio

Enorme asteróide 7335 (1989 JA) passará pela Terra em 27 de maio

22 de maio de 2022
Dados do Hubble mostram que “algo estranho” está acontecendo

Dados do Hubble mostram que “algo estranho” está acontecendo

22 de maio de 2022
Ciência simplificada: o que são microplásticos?

Ciência simplificada: o que são microplásticos?

22 de maio de 2022
Nerd Ciência

We bring you the best Premium WordPress Themes that perfect for news, magazine, personal blog, etc. Check our landing page for details.

Follow us

Recent News

Equipe da Estação Espacial abre a escotilha do Boeing Starliner e cumprimenta “Rosie the Rocketeer”

Equipe da Estação Espacial abre a escotilha do Boeing Starliner e cumprimenta “Rosie the Rocketeer”

22 de maio de 2022
Enorme asteróide 7335 (1989 JA) passará pela Terra em 27 de maio

Enorme asteróide 7335 (1989 JA) passará pela Terra em 27 de maio

22 de maio de 2022

Tags

anos Black Cientistas Ciência Como COVID COVID19 células das dos Espacial Espaço Estação está foguete Friday James Lançamento lua mais Marte missão mundo NASA Nova novo não para pela pode podem por ser seu sobre solar SpaceX são telescópio tem terra uma vida vivo Webb
  • Sobre-nós
  • Anunciar
  • Política de Privacidade
  • Contato

© 2022 Nerd Ciência - A ciência para todos! Hospedado por 7CLOUD - Hospedagem de Sites Ilimitada.

No Result
View All Result
  • Home
  • Espaço
  • Astronomia
  • Biotecnologia
  • Arqueologia
  • Contato

© 2022 Nerd Ciência - A ciência para todos! Hospedado por 7CLOUD - Hospedagem de Sites Ilimitada.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In