Subscribe to get Updates
  • Login
Nerd Ciência
  • Home
  • Espaço
  • Astronomia
  • Biotecnologia
  • Arqueologia
  • Contato
No Result
View All Result
  • Home
  • Espaço
  • Astronomia
  • Biotecnologia
  • Arqueologia
  • Contato
No Result
View All Result
Nerd Ciência
No Result
View All Result
Home Algorithm

Ensinar física à IA pode permitir que ela faça novas descobertas por conta própria

Nerd Ciência by Nerd Ciência
16 de junho de 2022
in Algorithm, Artificial Intelligence, Computer Science, Duke University, Electromagnetics, Machine Learning, Metamaterials, Technology
0
Jogando o conhecido e o desconhecido por meio da solução de quebra-cabeças com um agente de inteligência artificial
0
SHARES
7
VIEWS
Share on FacebookShare on Twitter

Solução de problemas de IA de dados de inteligência artificial

Pesquisadores da Duke University descobriram que algoritmos de aprendizado de máquina podem ganhar novos graus de transparência e insights sobre as propriedades dos materiais depois de ensiná-los a física conhecida.

A incorporação de física estabelecida em algoritmos de rede neural os ajuda a descobrir novos insights sobre as propriedades dos materiais

De acordo com pesquisadores da Duke University, incorporar física conhecida em algoritmos de aprendizado de máquina pode ajudar as enigmáticas caixas pretas a atingir novos níveis de transparência e percepção das características dos materiais.

Os pesquisadores usaram um algoritmo sofisticado de aprendizado de máquina em um dos primeiros esforços desse tipo para identificar as características de uma classe de materiais de engenharia conhecidos como metamateriais e prever como eles interagem com campos eletromagnéticos.

O algoritmo foi essencialmente forçado a mostrar seu trabalho, pois primeiro teve que levar em conta as restrições físicas conhecidas do metamaterial. O método não só permitiu ao algoritmo prever as propriedades do metamaterial com alta[{” attribute=””>accuracy, but it also did it more quickly and with additional insights than earlier approaches.

Silicon Metamaterials

Silicon metamaterials such as this, featuring rows of cylinders extending into the distance, can manipulate light depending on the features of the cylinders. Research has now shown that incorporating known physics into a machine learning algorithm can reveal new insights into how to design them. Credit: Omar Khatib

The results were published in the journal Advanced Optical Materials on May 13th, 2022.

“By incorporating known physics directly into the machine learning, the algorithm can find solutions with less training data and in less time,” said Willie Padilla, professor of electrical and computer engineering at Duke. “While this study was mainly a demonstration showing that the approach could recreate known solutions, it also revealed some insights into the inner workings of non-metallic metamaterials that nobody knew before.”

Metamaterials are synthetic materials composed of many individual engineered features, which together produce properties not found in nature through their structure rather than their chemistry. In this case, the metamaterial consists of a large grid of silicon cylinders that resemble a Lego baseplate.

Depending on the size and spacing of the cylinders, the metamaterial interacts with electromagnetic waves in various ways, such as absorbing, emitting, or deflecting specific wavelengths. In the new paper, the researchers sought to build a type of machine learning model called a neural network to discover how a range of heights and widths of a single-cylinder affects these interactions. But they also wanted its answers to make sense.

“Neural networks try to find patterns in the data, but sometimes the patterns they find don’t obey the laws of physics, making the model it creates unreliable,” said Jordan Malof, assistant research professor of electrical and computer engineering at Duke. “By forcing the neural network to obey the laws of physics, we prevented it from finding relationships that may fit the data but aren’t actually true.”

The physics that the research team imposed upon the neural network is called a Lorentz model — a set of equations that describe how the intrinsic properties of a material resonate with an electromagnetic field. Rather than jumping straight to predicting a cylinder’s response, the model had to learn to predict the Lorentz parameters that it then used to calculate the cylinder’s response.

Incorporating that extra step, however, is much easier said than done.

“When you make a neural network more interpretable, which is in some sense what we’ve done here, it can be more challenging to fine-tune,” said Omar Khatib, a postdoctoral researcher working in Padilla’s laboratory. “We definitely had a difficult time optimizing the training to learn the patterns.”

Once the model was working, however, it proved to be more efficient than previous neural networks the group had created for the same tasks. In particular, the group found this approach can dramatically reduce the number of parameters needed for the model to determine the metamaterial properties.

They also found that this physics-based approach to artificial intelligence is capable of making discoveries all on its own.

As an electromagnetic wave travels through an object, it doesn’t necessarily interact with it in exactly the same way at the beginning of its journey as it does at its end. This phenomenon is known as spatial dispersion. Because the researchers had to tweak the spatial dispersion parameters to get the model to work accurately, they discovered insights into the physics of the process that they hadn’t previously known.

“Now that we’ve demonstrated that this can be done, we want to apply this approach to systems where the physics is unknown,” Padilla said.

“Lots of people are using neural networks to predict material properties, but getting enough training data from simulations is a giant pain,” Malof added. “This work also shows a path toward creating models that don’t need as much data, which is useful across the board.”

Reference: “Learning the Physics of All-Dielectric Metamaterials with Deep Lorentz Neural Networks” by Omar Khatib, Simiao Ren, Jordan Malof and Willie J. Padilla, 13 May 2022, Advanced Optical Materials.
DOI: 10.1002/adom.202200097

This research was supported by the Department of Energy (DESC0014372).

Tags: contadescobertaselaensinarFaçaFísicaNovaspermitirpodeporprópria
Advertisement Banner
Previous Post

Danos à rede cerebral freiam o desejo de fumar

Next Post

Continentes perdidos podem estar escondidos dentro da Terra

Nerd Ciência

Nerd Ciência

Next Post
Continentes perdidos podem estar escondidos dentro da Terra

Continentes perdidos podem estar escondidos dentro da Terra

Discussion about this post

Recommended

Elon Musk eleito a pessoa do ano pela Time Magazine

O chefe espacial russo, Dmitry Rogozin, aparentemente ameaça Elon Musk

2 meses ago
Este astrônomo transforma pequeno país do Leste Europeu em uma potência de detecção de asteróides

Este astrônomo transforma pequeno país do Leste Europeu em uma potência de detecção de asteróides

3 meses ago

Don't Miss

As pessoas não são tão boas em resolver problemas complexos

As pessoas não são tão boas em resolver problemas complexos

30 de junho de 2022
Astronomia e Astrofísica 101: Matéria Escura

Astronomia e Astrofísica 101: Matéria Escura

30 de junho de 2022
A duração do sono é um componente essencial para a saúde do coração e do cérebro

A duração do sono é um componente essencial para a saúde do coração e do cérebro

30 de junho de 2022
JET Fusion Facility – At Temperatures 10x Higher Than the Center of the Sun – Sets a New World Energy Record

Grande avanço coloca o sonho de energia de fusão nuclear limpa e ilimitada ao seu alcance

29 de junho de 2022
Nerd Ciência

We bring you the best Premium WordPress Themes that perfect for news, magazine, personal blog, etc. Check our landing page for details.

Follow us

Recent News

As pessoas não são tão boas em resolver problemas complexos

As pessoas não são tão boas em resolver problemas complexos

30 de junho de 2022
Astronomia e Astrofísica 101: Matéria Escura

Astronomia e Astrofísica 101: Matéria Escura

30 de junho de 2022

Tags

anos Cientistas Ciência Como COVID COVID19 células das dos Espacial Espaço Estação está foguete James Lançamento lua lunar mais Marte missão mundo NASA nos Nova novo não para pela pode podem por ser seu sobre solar SpaceX são telescópio terra uma vida vivo você Webb
  • Sobre-nós
  • Anunciar
  • Política de Privacidade
  • Contato

© 2022 Nerd Ciência - A ciência para todos! Hospedado por 7CLOUD - Hospedagem de Sites Ilimitada.

No Result
View All Result
  • Home
  • Espaço
  • Astronomia
  • Biotecnologia
  • Arqueologia
  • Contato

© 2022 Nerd Ciência - A ciência para todos! Hospedado por 7CLOUD - Hospedagem de Sites Ilimitada.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In